Signatures of superconductivity near 80 K in a nickelate under high pressure (2024)

  • Bednorz, J. G. & Müller, K. A. Possible highTc superconductivity in the Ba–La–Cu–O system. Z. Phys. B Condens. Matter 64, 189–193 (1986).

    Article ADS CAS Google Scholar

  • Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).

    Article ADS CAS PubMed Google Scholar

  • Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article ADS CAS Google Scholar

  • Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article ADS CAS PubMed Google Scholar

  • Zhang, F. C. & Rice, T. M. Effective Hamiltonian for the superconducting Cu oxides. Phys. Rev. B 37, 3759–3761 (1988).

    Article ADS CAS Google Scholar

  • Gao, M., Lu, Z.-Y. & Xiang, T. Finding high-temperature superconductors by metallizing the σ-bonding electrons. Physics 44, 421–426 (2015).

    Google Scholar

  • Shen, Z.-X. et al. Anomalously large gap anisotropy in the a-b plane of Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 70, 1553–1556 (1993).

    Article ADS CAS PubMed Google Scholar

  • Wollman, D. A., Van Harlingen, D. J., Lee, W. C., Ginsberg, D. M. & Leggett, A. J. Experimental determination of the superconducting pairing state in YBCO from the phase coherence of YBCO-Pb dc SQUIDs. Phys. Rev. Lett. 71, 2134–2137 (1993).

    Article ADS CAS PubMed Google Scholar

  • Hayward, M. A., Green, M. A., Rosseinsky, M. J. & Sloan, J. Sodium hydride as a powerful reducing agent for topotactic oxide deintercalation: synthesis and characterization of the nickel(I) oxide LaNiO2. J. Am. Chem. Soc. 121, 8843–8854 (1999).

    Article CAS Google Scholar

  • Boris, A. V. et al. Dimensionality control of electronic phase transitions in nickel-oxide superlattices. Science 332, 937–940 (2011).

    Article ADS CAS PubMed Google Scholar

  • Disa, A. S. et al. Orbital engineering in symmetry-breaking polar heterostructures. Phys. Rev. Lett. 114, 026801 (2015).

    Article ADS CAS PubMed Google Scholar

  • Li, D. et al. Superconductivity in an infinite-layer nickelate. Nature 572, 624–627 (2019).

    Article ADS CAS PubMed Google Scholar

  • Osada, M., Wang, B. Y., Lee, K., Li, D. & Hwang, H. Y. Phase diagram of infinite layer praseodymium nickelate Pr1−xSrxNiO2 thin films. Phys. Rev. Mater. 4, 121801 (2020).

    Article CAS Google Scholar

  • Pan, G. A. et al. Superconductivity in a quintuple-layer square-planar nickelate. Nat. Mater. 21, 160–164 (2022).

    Article ADS CAS PubMed Google Scholar

  • Wang, N. N. et al. Pressure-induced monotonic enhancement of Tc to over 30 K in superconducting Pr0.82Sr0.18NiO2 thin films. Nat. Commun. 13, 4367 (2022).

    Article ADS CAS PubMed PubMed Central Google Scholar

  • Ding, X. et al. Critical role of hydrogen for superconductivity in nickelates. Nature 615, 50–55 (2023).

    Article ADS CAS PubMed Google Scholar

  • Li, Q. et al. Absence of superconductivity in bulk Nd1−xSrxNiO2. Commun. Mater. 1, 16 (2020).

    Article Google Scholar

  • Wang, B.-X. et al. Synthesis and characterization of bulk Nd1−xSrxNiO2 and Nd1−xSrxNiO3. Phys. Rev. Mater. 4, 084409 (2020).

    Article ADS CAS Google Scholar

  • Huo, M. et al. Synthesis and properties of La1–xSrxNiO3 and La1–xSrxNiO2. Chin. Phys. B 31, 107401 (2022).

    Article ADS Google Scholar

  • Nica, E. M. et al. Theoretical investigation of superconductivity in trilayer square-planar nickelates. Phys. Rev. B 102, 020504 (2020).

    Article ADS CAS Google Scholar

  • Lechermann, F. Multiorbital processes rule the Nd1−xSrxNiO2 normal state. Phys. Rev. X 10, 041002 (2020).

    CAS Google Scholar

  • Voronin, V. I. et al. Neutron diffraction, synchrotron radiation and EXAFS spectroscopy study of crystal structure peculiarities of the lanthanum nickelates Lan+1NinOy (n=1,2,3). Nucl. Instrum. Methods Phys. Res. A 470, 202–209 (2001).

    Article ADS CAS Google Scholar

  • Liu, Z. et al. Evidence for charge and spin density waves in single crystals of La3Ni2O7 and La3Ni2O6. Sci. Chin. Phys. Mech. Astron. 66, 217411 (2023).

    Article ADS CAS Google Scholar

  • Pardo, V. & Pickett, W. E. Metal-insulator transition in layered nickelates La3Ni2O7−δ (δ = 0.0, 0.5, 1). Phys. Rev. B 83, 245128 (2011).

    Article ADS Google Scholar

  • Adhikary, P., Bandyopadhyay, S., Das, T., Dasgupta, I. & Saha-Dasgupta, T. Orbital-selective superconductivity in a two-band model of infinite-layer nickelates. Phys. Rev. B 102, 100501 (2020).

    Article ADS CAS Google Scholar

  • Sakakibara, H. et al. Orbital mixture effect on the Fermi-surface–Tc correlation in the cuprate superconductors: bilayer vs. single layer. Phys. Rev. B 89, 224505 (2014).

    Article ADS Google Scholar

  • Choi, H. J., Roundy, D., Sun, H., Cohen, M. L. & Louie, S. G. The origin of the anomalous superconducting properties of MgB2. Nature 418, 758–760 (2002).

    Article ADS CAS PubMed Google Scholar

  • Gao, M., Lu, Z.-Y. & Xiang, T. Prediction of phonon-mediated high-temperature superconductivity in Li3B4C2. Phys. Rev. B 91, 045132 (2015).

    Article ADS Google Scholar

  • Drozdov, A. P. et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 569, 528–531 (2019).

    Article ADS CAS PubMed Google Scholar

  • Wu, G., Neumeier, J. J. & Hundley, M. F. Magnetic susceptibility, heat capacity, and pressure dependence of the electrical resistivity of La3Ni2O7 and La4Ni3O10. Phys. Rev. B 63, 245120 (2001).

    Article ADS Google Scholar

  • Hosoya, T. et al. Pressure studies on the electrical properties in R2-xSrxNi1-yCuyO4+δ (R=La, Nd) and La3Ni2O7+δ. J. Phys. Conf. Ser. 121, 052013 (2008).

    Article Google Scholar

  • Mochizuki, Y., Akamatsu, H., Kumagai, Y. & Oba, F. Strain-engineered Peierls instability in layered perovskite La3Ni2O7 from first principles. Phys. Rev. Mater. 2, 125001 (2018).

    Article Google Scholar

  • Yuan, J. et al. Scaling of the strange-metal scattering in unconventional superconductors. Nature 602, 431–436 (2022).

    Article ADS CAS PubMed Google Scholar

  • Sun, L. et al. Re-emerging superconductivity at 48 kelvin in iron chalcogenides. Nature 483, 67–69 (2012).

    Article ADS CAS PubMed Google Scholar

  • Takahashi, H. et al. Pressure-induced superconductivity in the iron-based ladder material BaFe2S3. Nat. Mater. 14, 1008–1012 (2015).

    Article ADS CAS PubMed Google Scholar

  • Deemyad, S. & Schilling, J. S. Superconducting phase diagram of Li metal in nearly hydrostatic pressures up to 67 GPa. Phys. Rev. Lett. 91, 167001 (2003).

    Article ADS PubMed Google Scholar

  • Chen, X. J. et al. Enhancement of superconductivity by pressure-driven competition in electronic order. Nature 466, 950–953 (2010).

    Article ADS CAS PubMed Google Scholar

  • Chu, C. W. et al. Superconductivity above 150 K in HgBa2Ca2Cu3O8+δ at high pressures. Nature 365, 323–325 (1993).

    Article ADS CAS Google Scholar

  • Gu, Q. & Wen, H.-H. Superconductivity in nickel-based 112 systems. Innovation 3, 100202 (2022).

    CAS PubMed Google Scholar

  • Zeng, S. et al. Superconductivity in infinite-layer nickelate La1−xCaxNiO2 thin films. Sci. Adv. 8, eabl9927 (2022).

    Article CAS PubMed PubMed Central Google Scholar

  • Hsu, Y.-T. et al. Insulator-to-metal crossover near the edge of the superconducting dome in Nd1−xSrxNiO2. Phys. Rev. Res. 3, L042015 (2021).

    Article CAS Google Scholar

  • Zhang, Z., Greenblatt, M. & Goodenough, J. B. Synthesis, structure, and properties of the layered perovskite La3Ni2O7-δ. J. Solid State Chem. Solids. 108, 402–409 (1994).

    Article ADS CAS Google Scholar

  • Taniguchi, S. et al. Transport, magnetic and thermal properties of La3Ni2O7-δ. J. Phys. Soc. Jpn. 64, 1644–1650 (1995).

    Article ADS CAS Google Scholar

  • Zhi-An, R. et al. Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O1-xFx] FeAs. Chin. Phys. Lett. 25, 2215–2216 (2008).

    Article ADS Google Scholar

  • Prescher, C. & Prakapenka, V. B. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press. Res. 35, 223–230 (2015).

    Article ADS CAS Google Scholar

  • Coelho, A. A. TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Crystallogr. 51, 210–218 (2018).

    Article CAS Google Scholar

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article ADS CAS Google Scholar

  • Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article ADS CAS Google Scholar

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article ADS CAS PubMed Google Scholar

  • Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article ADS CAS Google Scholar

  • Signatures of superconductivity near 80 K in a nickelate under high pressure (2024)

    References

    Top Articles
    Latest Posts
    Recommended Articles
    Article information

    Author: Horacio Brakus JD

    Last Updated:

    Views: 5941

    Rating: 4 / 5 (51 voted)

    Reviews: 82% of readers found this page helpful

    Author information

    Name: Horacio Brakus JD

    Birthday: 1999-08-21

    Address: Apt. 524 43384 Minnie Prairie, South Edda, MA 62804

    Phone: +5931039998219

    Job: Sales Strategist

    Hobby: Sculling, Kitesurfing, Orienteering, Painting, Computer programming, Creative writing, Scuba diving

    Introduction: My name is Horacio Brakus JD, I am a lively, splendid, jolly, vivacious, vast, cheerful, agreeable person who loves writing and wants to share my knowledge and understanding with you.