Bednorz, J. G. & Müller, K. A. Possible highTc superconductivity in the Ba–La–Cu–O system. Z. Phys. B Condens. Matter 64, 189–193 (1986).
Article ADS CAS Google Scholar
Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).
Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).
Article ADS CAS Google Scholar
Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).
Zhang, F. C. & Rice, T. M. Effective Hamiltonian for the superconducting Cu oxides. Phys. Rev. B 37, 3759–3761 (1988).
Article ADS CAS Google Scholar
Gao, M., Lu, Z.-Y. & Xiang, T. Finding high-temperature superconductors by metallizing the σ-bonding electrons. Physics 44, 421–426 (2015).
Shen, Z.-X. et al. Anomalously large gap anisotropy in the a-b plane of Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett. 70, 1553–1556 (1993).
Wollman, D. A., Van Harlingen, D. J., Lee, W. C., Ginsberg, D. M. & Leggett, A. J. Experimental determination of the superconducting pairing state in YBCO from the phase coherence of YBCO-Pb dc SQUIDs. Phys. Rev. Lett. 71, 2134–2137 (1993).
Hayward, M. A., Green, M. A., Rosseinsky, M. J. & Sloan, J. Sodium hydride as a powerful reducing agent for topotactic oxide deintercalation: synthesis and characterization of the nickel(I) oxide LaNiO2. J. Am. Chem. Soc. 121, 8843–8854 (1999).
Boris, A. V. et al. Dimensionality control of electronic phase transitions in nickel-oxide superlattices. Science 332, 937–940 (2011).
Disa, A. S. et al. Orbital engineering in symmetry-breaking polar heterostructures. Phys. Rev. Lett. 114, 026801 (2015).
Li, D. et al. Superconductivity in an infinite-layer nickelate. Nature 572, 624–627 (2019).
Osada, M., Wang, B. Y., Lee, K., Li, D. & Hwang, H. Y. Phase diagram of infinite layer praseodymium nickelate Pr1−xSrxNiO2 thin films. Phys. Rev. Mater. 4, 121801 (2020).
Pan, G. A. et al. Superconductivity in a quintuple-layer square-planar nickelate. Nat. Mater. 21, 160–164 (2022).
Wang, N. N. et al. Pressure-induced monotonic enhancement of Tc to over 30 K in superconducting Pr0.82Sr0.18NiO2 thin films. Nat. Commun. 13, 4367 (2022).
Ding, X. et al. Critical role of hydrogen for superconductivity in nickelates. Nature 615, 50–55 (2023).
Li, Q. et al. Absence of superconductivity in bulk Nd1−xSrxNiO2. Commun. Mater. 1, 16 (2020).
Wang, B.-X. et al. Synthesis and characterization of bulk Nd1−xSrxNiO2 and Nd1−xSrxNiO3. Phys. Rev. Mater. 4, 084409 (2020).
Article ADS CAS Google Scholar
Huo, M. et al. Synthesis and properties of La1–xSrxNiO3 and La1–xSrxNiO2. Chin. Phys. B 31, 107401 (2022).
Nica, E. M. et al. Theoretical investigation of superconductivity in trilayer square-planar nickelates. Phys. Rev. B 102, 020504 (2020).
Article ADS CAS Google Scholar
Lechermann, F. Multiorbital processes rule the Nd1−xSrxNiO2 normal state. Phys. Rev. X 10, 041002 (2020).
CAS Google Scholar
Voronin, V. I. et al. Neutron diffraction, synchrotron radiation and EXAFS spectroscopy study of crystal structure peculiarities of the lanthanum nickelates Lan+1NinOy (n=1,2,3). Nucl. Instrum. Methods Phys. Res. A 470, 202–209 (2001).
Article ADS CAS Google Scholar
Liu, Z. et al. Evidence for charge and spin density waves in single crystals of La3Ni2O7 and La3Ni2O6. Sci. Chin. Phys. Mech. Astron. 66, 217411 (2023).
Article ADS CAS Google Scholar
Pardo, V. & Pickett, W. E. Metal-insulator transition in layered nickelates La3Ni2O7−δ (δ = 0.0, 0.5, 1). Phys. Rev. B 83, 245128 (2011).
Adhikary, P., Bandyopadhyay, S., Das, T., Dasgupta, I. & Saha-Dasgupta, T. Orbital-selective superconductivity in a two-band model of infinite-layer nickelates. Phys. Rev. B 102, 100501 (2020).
Article ADS CAS Google Scholar
Sakakibara, H. et al. Orbital mixture effect on the Fermi-surface–Tc correlation in the cuprate superconductors: bilayer vs. single layer. Phys. Rev. B 89, 224505 (2014).
Choi, H. J., Roundy, D., Sun, H., Cohen, M. L. & Louie, S. G. The origin of the anomalous superconducting properties of MgB2. Nature 418, 758–760 (2002).
Gao, M., Lu, Z.-Y. & Xiang, T. Prediction of phonon-mediated high-temperature superconductivity in Li3B4C2. Phys. Rev. B 91, 045132 (2015).
Drozdov, A. P. et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 569, 528–531 (2019).
Wu, G., Neumeier, J. J. & Hundley, M. F. Magnetic susceptibility, heat capacity, and pressure dependence of the electrical resistivity of La3Ni2O7 and La4Ni3O10. Phys. Rev. B 63, 245120 (2001).
Hosoya, T. et al. Pressure studies on the electrical properties in R2-xSrxNi1-yCuyO4+δ (R=La, Nd) and La3Ni2O7+δ. J. Phys. Conf. Ser. 121, 052013 (2008).
Mochizuki, Y., Akamatsu, H., Kumagai, Y. & Oba, F. Strain-engineered Peierls instability in layered perovskite La3Ni2O7 from first principles. Phys. Rev. Mater. 2, 125001 (2018).
Yuan, J. et al. Scaling of the strange-metal scattering in unconventional superconductors. Nature 602, 431–436 (2022).
Sun, L. et al. Re-emerging superconductivity at 48 kelvin in iron chalcogenides. Nature 483, 67–69 (2012).
Takahashi, H. et al. Pressure-induced superconductivity in the iron-based ladder material BaFe2S3. Nat. Mater. 14, 1008–1012 (2015).
Deemyad, S. & Schilling, J. S. Superconducting phase diagram of Li metal in nearly hydrostatic pressures up to 67 GPa. Phys. Rev. Lett. 91, 167001 (2003).
Chen, X. J. et al. Enhancement of superconductivity by pressure-driven competition in electronic order. Nature 466, 950–953 (2010).
Chu, C. W. et al. Superconductivity above 150 K in HgBa2Ca2Cu3O8+δ at high pressures. Nature 365, 323–325 (1993).
Article ADS CAS Google Scholar
Gu, Q. & Wen, H.-H. Superconductivity in nickel-based 112 systems. Innovation 3, 100202 (2022).
CAS PubMed Google Scholar
Zeng, S. et al. Superconductivity in infinite-layer nickelate La1−xCaxNiO2 thin films. Sci. Adv. 8, eabl9927 (2022).
Hsu, Y.-T. et al. Insulator-to-metal crossover near the edge of the superconducting dome in Nd1−xSrxNiO2. Phys. Rev. Res. 3, L042015 (2021).
Zhang, Z., Greenblatt, M. & Goodenough, J. B. Synthesis, structure, and properties of the layered perovskite La3Ni2O7-δ. J. Solid State Chem. Solids. 108, 402–409 (1994).
Article ADS CAS Google Scholar
Taniguchi, S. et al. Transport, magnetic and thermal properties of La3Ni2O7-δ. J. Phys. Soc. Jpn. 64, 1644–1650 (1995).
Article ADS CAS Google Scholar
Zhi-An, R. et al. Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O1-xFx] FeAs. Chin. Phys. Lett. 25, 2215–2216 (2008).
Prescher, C. & Prakapenka, V. B. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press. Res. 35, 223–230 (2015).
Article ADS CAS Google Scholar
Coelho, A. A. TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Crystallogr. 51, 210–218 (2018).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Article ADS CAS Google Scholar
Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
Article ADS CAS Google Scholar
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).
Article ADS CAS Google Scholar